C3＿2－1

設 $x, ~ y$ 均為整數，若 $6^{x} \times 8^{y}=2^{11} \times 3^{5}$ ，則 $x-y=3$ 。
$(2+\sqrt{5})^{4}(2-\sqrt{5})^{3}$ 之值為 $-2-\sqrt{5}$
求下列各式之值
（1）$\left[\left(2^{-1}\right)^{-3} \times\left(2^{2}\right)^{-2}\right]^{6}=\frac{1}{64}$
（2）$\frac{2^{-3}+3^{-2}}{1^{-1}+5^{-2}+9^{0}}=\frac{25}{216}$

設 $\left(a^{-1} \times b^{-2}\right)^{3} \times\left(b^{-1} \times a^{2}\right)^{-3}=a^{x} b^{y}$ ，且 $a, ~ b$ 均為正數，則數對 $(x, y)=(-9,-3)$
設 $a>0$ ，若 $a^{\frac{1}{2}}+a^{-\frac{1}{2}}=\sqrt{5}$ ，則
（1）$a+a^{-1}=$
3
（2）$a^{\frac{3}{2}}+a^{-\frac{3}{2}}=2 \sqrt{5}$
（3）$a^{2}+a^{-2}=7$

設 $a>0$ ，若 $a^{x}+a^{-x}=3$ ，則 $\frac{a^{3 x}+a^{-3 x}}{a^{2 x}+a^{-2 x}}=\frac{18}{7}$

求下列各式之值
（1） $5^{4.3} \times 5^{-3.8} \div 5^{2.5}=\frac{1}{25}$
（2）$(0.0625)^{0.25}=\frac{1}{2}$
（3）$\left[(\sqrt{3})^{\frac{1}{4}}\right]^{-16}=\frac{1}{9}$
（4）$\left(\frac{8}{27}\right)^{-\frac{2}{3}}=\underline{\frac{9}{4}}$ 。 $. ~ . ~_{\text {．}}$

若 $\left(\frac{\sqrt[4]{a^{2} b^{6}} \times \sqrt[6]{a}}{\sqrt[3]{a^{2} b}}\right)^{6}=a^{x} b^{y}$ ，且 $a, ~ b$ 均為正數，則數對 $(x, y)=\underline{(0,7)}$ 。
若 $\sqrt[3]{81 \sqrt[4]{729 \div \sqrt[3]{81}}}=3^{x}, x=\underline{\frac{31}{18}} 。$
已知 $9^{x}=5$ ，則 $27^{1-x} \times 10=\frac{54 \sqrt{5}}{5}$

設 $a^{2 x}=5$ ，則 $\frac{a^{3 x}+a^{-3 x}}{a^{x}-a^{-x}}=\underline{\frac{63}{10}}$ 。
臺灣曾爆發輻射鋼筋汗染住宅，汗染源的鈷 60 其半衰期（衰變成原來一半）所需時間為 5 年半。若輻射劑量原本有 8 毫西弗，而安全劑量為 1 毫西弗，則此鈷 60 汗染的鋼筋需 16.5 年後才能衰變剩 1 毫西弗。

設 x ，y 為實數，若 $(328)^{x}=16,(41)^{y}=64$ ，則 $\frac{4}{x}-\frac{6}{y}=\underline{3}$ 。
照度的單位為勒克斯（Lux），表燭光在距離 1 公尺的物體表面產生的照度〔照度 L（勒
克斯）與距離 d（公尺）的關係式為 $L=8 \times 10^{4} \times d^{-\frac{3}{2}}$ ］
（1）若要求照度為 10 勒克斯，則距離 d 為 400 公尺
（2）若 $d=100$ 公尺時，照度為 L_{0} ，當照度欲提升成 $10 L_{0}$ 時，距離 d 應為 $10 \sqrt[3]{10}$公尺。

C3＿2－2
設 $0<a \neq 1$ ，則有關 $f(x)=a^{x}$ 的敘述何者正確？
（A）$f(1)=0$
（B）$f\left(x_{1}+x_{2}\right)=f\left(x_{1}\right) \times f\left(x_{2}\right)$
（C）$f\left(x_{1}-x_{2}\right)=f\left(x_{1}\right)-f\left(x_{2}\right)$
（D）$x_{1}>x_{2} \Rightarrow f\left(x_{1}\right)>f\left(x_{2}\right)$ 。

下列何者是 $y=\left(\frac{1}{\sqrt{2}}\right)^{-x}$ 的圖形？（A）
（A）

（B）

（C）

（D）

函數 $y=2^{-x}$ 的圖形向左平移 1 單位，再向下平移 3 單位，所得新的函數為 $y=$
$\underline{\frac{1}{2^{x+1}}-3}$ ，其圖形和 y 軸的交點坐標為 $\left(0,-\frac{5}{2}\right)$ 。

試比較下列各數的大小（由大排到小）
（1）$a=625^{\frac{1}{5}}, b=125^{\frac{1}{4}}, c=25^{\frac{1}{3}}, d=\sqrt{5}: \quad a>b>c>d$
（2）$a=(0.7)^{\frac{1}{3}}, b=(0.49)^{\frac{1}{5}}, c=(0.343)^{\frac{1}{7}}: \quad a>b>c$
（3）$a=5^{74}, b=3^{111}, c=2^{148}$ ： \qquad
如圖（一），$\Gamma_{1}, ~ \Gamma_{2}, ~ \Gamma_{3}, ~ \Gamma_{4}$ 分別代表 $y=a^{x}, ~ y=b^{x}, ~ y=c^{x}$ ， $y=d^{x}$ 的指數函數圖形，則 $a, ~ b, ~ c, ~ d$ 由大至小的順序為

$$
b>a>d>c
$$

圖（一）

若 $\left(\frac{1}{3}\right)^{a}=\frac{1}{60},\left(\frac{1}{9}\right)^{b}=\frac{1}{6400},\left(\frac{1}{27}\right)^{c}=\frac{1}{343000}$ ，則 $a, ~ b, ~ c$ 由大至小為 $b>c>a$ 。
實驗室中培養某細菌發現它每小時增加一倍數量，若放 N 隻細菌進培養皿，過 3 小時後細菌數變成 S 隻，再過 2 小時，細菌數變成 $S+480$ 隻，則數對 $(N, S)=$ $(20,160)$ 。

布袋蓮是一種繁殖力極強的植物，小明在面積為 500 平方公尺的水池中放入一些布袋蓮，已知布袋蓮在水面覆蓋的面積 $f(x)$（單位：平方公尺）和時間 x（單位：月）的關係為 $f(x)=k \times a^{x}$ ，若投入布袋蓮 x 個月後觀測其覆蓋面積繪製出圖（二），則
（1）$a=\underline{\frac{3}{2}}$ ；

圖（二）
（2）$k=\frac{128}{9} \quad$ ；
（3）6個月後布袋蓮的覆蓋面積為 162 平方公尺。

牛頓冷卻定律描述物體在常溫環境下所損失熱的速率，與物體和其周圍環境間的溫差成比例。如果物體的原始溫度為 T_{0} ，經過 t 分鐘冷卻溫度變成 $T(t)$ ，周圍環境溫度為 C ，則 $T(t)=C+\left(T_{0}-C\right) \times e^{-k t}$ ，其中 e 為尤拉數，即一常數，而 k 則為與物體性質有關的常數。若用 $90^{\circ} \mathrm{C}$ 的開水沖泡咖啡，置於 $26^{\circ} \mathrm{C}$ 的室內， 5 分鐘後咖啡的溫度變成 $58^{\circ} \mathrm{C}$ ，則 20 分鐘後咖啡的溫度降為 $30{ }^{\circ} \mathrm{C}$ 。（最適合沖煮咖啡的水溫為 88 到 $92^{\circ} \mathrm{C}$ 之間，太熱的水會沖出咖啡的焦苦味，水溫太低則會萃取不足，而最適合品味咖啡的酸度，醇厚度是降溫至 $50^{\circ} \mathrm{C}$ 以下的時候。）
［素養導向］
解下列方程式
（1）$\left(\frac{2}{3}\right)^{x-3}=\left(\frac{3}{2}\right)^{2 x-9}: x=\underline{4}$ ；（2） $2^{2 x+3}-3 \times 2^{x+1}+1=0: x=\underline{-1 \text { 或 }-2}$ 。
解不等式 ：$(0.36)^{x-2}>\frac{1}{0.216}: ~ x<\frac{1}{2}$ 。

C3＿2－3
求下列對數之值
（1） $\log _{2} \frac{1}{32}=-5$
（2） $\log _{\frac{1}{9}} \sqrt{27}=-\frac{3}{4}$
（3） $\log _{49} \sqrt[3]{7}=\frac{1}{6}$
（4） $\log _{101} 1=0$
（5） $\log _{0.01} 0.00001=\frac{5}{2} \quad$.
設 $\log _{3} x=-2$ ，則 $\log _{x} 27=-\frac{3}{2}$
設 $\log _{x}\left(x^{2}+3 x\right)$ 有意義，則實數 x 的範圍為 $\quad x>0$ 且 $x \neq 1$
$\log _{2} \sqrt{8+3 \sqrt{7}}+\log _{2} \sqrt{8-3 \sqrt{7}}=0$.
$\log _{9} 3^{x}+\log _{6} \frac{1}{\sqrt[3]{36}}=2$ ，則 $x=\underline{\frac{16}{3}}$
設 $\log _{a} \sqrt[3]{25}=\frac{2}{3}, \log _{8} b=-\frac{1}{3}, \log _{2} \frac{1}{16}=c$ ，則 $a+2 b+3 c=-6$ 。
$2^{\frac{\log _{3} 25}{\log _{9} 5}}+9^{\log _{3} 2}=20$

求下列各式之值
（1） $4 \log _{2} \sqrt{2}-\frac{1}{2} \log _{2} 3+\log _{2} \frac{\sqrt{3}}{2}=1$
（2） $\log _{\frac{1}{16}} \frac{1}{2}+\log _{\frac{1}{25}} \frac{1}{5}+\log _{\frac{1}{27}} \frac{1}{3}=\underline{\frac{13}{12}}$
設 $a=\log _{10} 2, ~ b=\log _{10} 3$ ，試以 $a, ~ b$ 表示下列各數
（1） $\log _{10} \sqrt{24}=\frac{3}{2} a+\frac{1}{2} b$
（2） $\log _{10} \frac{27}{50}=a+3 b-2$
（3） $\log _{8} 9=\frac{2 b}{3 a}$ 。

求下列各式之值
（1）$\left(\log _{2} 5+\log _{4} 25\right) \times \log _{5} 16=8$
（2）$\left(\log _{2} 3+\log _{4} 27\right)\left(\log _{3} 2+\log _{9} \frac{1}{8}\right)=-\frac{5}{4}$
$\log _{10}(\sqrt{6+\sqrt{35}}-\sqrt{6-\sqrt{35}})=\frac{1}{2}$.
$\log _{4} 5 \times \log _{5} 6 \times \log _{6} 7 \times \log _{7} 8=\frac{3}{2}$
$\left(\log _{2} 6\right)\left(\log _{3} 6\right)-\left(\log _{2} 3+\log _{3} 2\right)=2$.
$\frac{\left(\log _{10} 2\right)^{3}+\left(\log _{10} 5\right)^{3}-1}{\left(\log _{10} 2\right)^{2}+\left(\log _{10} 5\right)^{2}-1}=\underline{\frac{3}{2}} \quad$.
國際上使用苁氏地震規模來表示地震規模的大小，由觀測點處的地震儀所記錄到地震波最大振幅的常用對數（底數是 10 的對數）演算而得，而地震時釋放的能量 $E(M)$（萬焦耳）和芮氏地震規模 M 之間的關係為 $\log _{10} E(M)=4.8+1.5 M$ 。
（1）若某次地震的芮氏規模為 4 ，則此次地震所釋放的能量為 $10^{10.8}$ 萬焦耳
（2）若芮氏規模 x 的地震所釋放的能量為芮氏規模 4 的 1000 倍，則 $x=6{ }^{\circ}$［素養導向］

C3＿2－4

下列有關 $y=\log _{2} x$ 的圖形性質，哪些錯誤？（多選）（D），（F）
（A）與 $y=\log _{\frac{1}{2}} x$ 對稱 x 軸
（B）與 $y=2^{x}$ 對稱 $x=y$
（C）必過點（ 1,0 ）
（D）圖形都落在 x軸上方（E）與 $y=\log _{\frac{1}{2}} x$ 的圖形恰交於一點
（F）和任何鉛直線交於一點。下列何者是 $y=\log _{\frac{1}{3}} \frac{1}{x}$ 的圖形？

（B）

（C）

（D）

右圖為 4 個對數函數圖形，填入下列對數函數的圖形對應代號
（1）$y=\log _{2} x$ ：
（B）
（2）$y=-\log _{2} x: \quad$（C）
（3）$y=\log _{2}(-x): \quad$（D）
（4）$y=\log _{2} 4 x: \quad$（A）

將 $y=\log _{2} x$ 的圖形向右平移 1 單位，再向下平移 2 單位，所得新的函數為 $y=f(x)$ ，則 $f(9)=1$ 。

右圖為函數 $y=b+\log _{a} x$ 的圖形，其中 $a, ~ b$ 均為實數，則下列敘述何者正確？ （D）
（A）$a>1, b>0$
（B）$a>1, b<0$
（C） $0<a<1, b>0$
（D） $0<a<1, b<0$ 。

設 $a>0$ 且 $a \neq 1$ ，則下列有關函數 $f(x)=\log _{a} x$ 的敘述，何者正確？
$\begin{array}{lll}\text {（A）} f(2)+f(3)=f(5) & \text {（B）} f(27)=3 f(9) & \text {（C）} f(27)-f(9)=f(3)\end{array}$
（D）若 $x_{1}>x_{2}$ ，則 $f\left(x_{1}\right)>f\left(x_{2}\right)$ 。
若函數 $y=f(x)$ 滿足 $f(m)+f(n)=f(m n)$ ，其中 $m, ~ n>0$ 。若 $f(3)=5$ ，則 $f(27)=$ 15 。

將下列各數由大至小的順序排列
（1）$a=3, b=3 \log _{3} 2, c=2 \log _{9} 16: \quad a>c>b$
（2）$a=\log _{2} 7, b=\log _{4} 81, c=\log _{\sqrt{2}} \sqrt{10}, d=3: c>b>d>a$
（3）$a=2 \log _{\frac{1}{2}} \sqrt{5}, b=\log _{\frac{1}{4}} 26, c=\log _{\frac{1}{8}} 99: \quad c>a>b \quad$ 。

右圖為 $y=\log _{a} x, ~ y=\log _{b} x, ~ y=\log _{c} x$ 和 $y=\log _{d} x$ 4 個對數函數的圖形，其中 $a, ~ b, ~ c, ~ d$ 均大於 0且不等於 1 ，則 $a, ~ b, ~ c, ~ d$ 由大至小的順序為 $b>a>d>c$

設函數 $y=\log _{a}(x-1)$ 的圖形通過 $(b, 0)$ ，$(3,1), ~(9, c)$ 三點，則 $a+b+c=7$
設某種藥物經由靜脈注射 t 小時後，在體內的殘留量為 $V(t)$ 毫克，且 $\log _{10} V(t)=a-b t$ ，其中 $a, ~ b$ 為常數。今注射該藥物第 1 小時和第 2 小時後測得體內的殘留量為 3 毫克和 0.6 毫克，則 $a=\log _{10} 15, b=\log _{10} 5$ ，該藥物原始注射劑量為 15 毫克。

解下列各方程式
（1） $\log _{3}\left(x^{2}-5 x+15\right)=1+\log _{3} x, x=3$ 或 5
（2） $\log _{10}\left(x^{2}+x+18\right)-\log _{10}(x+1)=1, x=1$ 或 8 。解下列各不等式
（1） $\log _{2}(x-3)<\log _{2}(5-x): 3<x<4$
（2） $\log _{\frac{1}{3}}(2 x-3)>\log _{\frac{1}{3}} x: \quad \frac{3}{2}<x<3$

已知 $\log 4.51=0.6542$ ，則
（1） $\log 451000=5.6542$ ，首數 $=5$ ，尾數 $=0.6542$
（2） $\log 0.000451=-3.3458$ ，首數 $=-4$ ，尾數 $=0.6542$
已知 $\log 6.25=0.7959$ ，求下列各式中之 x 值
（1） $\log x=4.7959, x=$ 62500
（2） $\log x=-3.2041, x=0.000625$
已知 $\log 2.52=0.4014$ ，則 $\log \sqrt{0.00252}=$ \square
-1.2993

已知 $\log 2=0.3010, \log 3=0.4771$ ，則
（1） $\log 120=$ \qquad （2） $\log 0.0036=-2.4438$

已知 $\log 2=0.3010, \log 3=0.4771$ ，則
（1） 24^{30} 是 42 位數
（2） 24^{30} 最高位數的數字是 2 。

已知 $\log 2=0.3010$ ，則 $\left(\frac{1}{8}\right)^{20}$ 在小數點後第 19 位開始不為 0 。
已知 $\log 2=0.3010, \log 3=0.4771$ ，則
（1）滿足 $10^{5}<2^{n}<10^{6}$ 之正整數 n 有 3 個
（2）滿足 $\left(\frac{1}{3}\right)^{n}<10^{-5}$ 之最小正整數 $n=11$ 。
若 6^{90} 是 71 位數，則 6^{30} 是 24 位數。
7^{100} 是 85 位數， 11^{100} 是 105 位數，則 77^{20} 是 38 位數。
設 $k=1+2+2^{2}+2^{3}+\cdots \cdots+2^{100}$ ，若 $\log 2=0.3010$ ，則 k 為 31 位數。
設 $10<x<100$ 且 $\log x^{2}$ 與 $\log \frac{1}{x}$ 尾數相同，則 $x=10 \sqrt[3]{10}$ 或 $10 \sqrt[3]{100}$ 。
$「$ 十二平均律 」 是鋼琴音階的依循規則：將 1 個八度音平分成 12 等分，每一等分稱為半音，音高八度表示頻率加倍。八度音將頻率分成 12 等分，即分成 12 項的等比數列，每個音的頻率均為前一個音的 $\sqrt[12]{2}$ 倍，依此原則來調音。若第一個音頻率為 a ，則 （1）第 25 個音頻率為 $4 a$（2）第 20 個音頻率最接近 $3 a \circ(\log 2=0.3010$ ， $\log 3=0.4771$ ）

一個社會若 65 歲以上人口占總人口數 20% 以上，稱之為「超高齡社會」，若某國在 2000年時總人口數為 2000 萬， 65 歲以上人口有 200 萬，假設每年人口總數比前一年增加 0.5% ，而 65 歲以上者比前一年增加 3% ，則該國預計再過 29 年邁入超高齡社會。
（答案取至整數位， $\log 2=0.3010, \log 1.03=0.0128, \log 1.005=0.0022$ ）［素養導向］

