C1＿3－1

設 O 為原點，$A(2 \cos \theta, 2 \sin \theta)$ ，則 $|\overrightarrow{O A}|=2$ 。
設 $A(2,-\sqrt{3}), ~ B(5,-4 \sqrt{3})$ ，則：
（1） $\overrightarrow{A B}=\underline{(3,-3 \sqrt{3})}$（2）$|\overrightarrow{A B}|=\underline{6} \quad$（3） $\overrightarrow{A B}$ 的方向角為 $300^{\circ} 。$
若 \vec{a} 的方向角為 $\frac{5}{4} \pi,|\vec{a}|=4$ ，則 $\vec{a}=(-2 \sqrt{2},-2 \sqrt{2}) 。$

設 $A(2,1)$ ，$B(-3,-1), ~ C(9,-5)$ ，則：
（1）若 $\overrightarrow{A B}=\overrightarrow{C D}$ ，則 D 點坐標為 $(4,-7)$
（2）若 $A B C D$ 為平行四邊形，則 D 點坐標為 $(14,-3)$ 。

設 $\vec{u}=(x-1,5), ~ \vec{v}=(4,2 y+1)$ ，若 $\vec{u}, ~ \vec{v}$ 互為反向量，則 $x+y=-6$設 O 為原點，$A(3,-1), ~ B(-2,-3), ~ C(5,7), ~ D(1,-2)$ ，若 $\overrightarrow{O P}=2 \overrightarrow{A B}-3 \overrightarrow{A C}+\overrightarrow{B D}$ ，則 P 點坐標為 $(-13,-27)$ 。

設 $\vec{a}=(3,6), ~ \vec{b}=(-1,3)$ ，若 $\vec{c}=3 \vec{a}+2 \vec{b}$ ，則與 \vec{c} 同向的單位向量為

$$
\left(\frac{7}{25}, \frac{24}{25}\right)
$$

設 $\vec{u}=\left(k, \frac{2}{3}\right)$ 為單位向量，則 $k= \pm \frac{\sqrt{5}}{3}$ 。
設 $\vec{a}=(2, k-1), ~ \vec{b}=(5,3-k)$ ，若 $\vec{a} / / \vec{b}$ ，則 $k=\underline{\frac{11}{7}}$
設 $A(-1,2), ~ B(4,12)$ ，且 $\overline{A P}: \overline{B P}=2: 3$ ，則 ：
（1）若 P 在 $\overline{A B}$ 上，則 P 點坐標為 $(1,6)$
（2）若 P 在 $\overline{A B}$ 延長線上，則 P 點坐標為 $(-11,-18) 。$

設 $A(3,-2), ~ B(-5,2), P$ 點在 $\overleftrightarrow{A B}$ 上，若 $4 \overrightarrow{A P}=-3 \overrightarrow{B A}$ ，求 P 點坐標為 $\quad(-3,1)$如圖，$\triangle A B C$ 中，$\overline{A P}: \overline{P Q}=3: 1, \overline{B Q}: \overline{Q C}=2: 3$ ，則 ：
（1）若 $\overrightarrow{A Q}=\alpha \overrightarrow{A B}+\beta \overrightarrow{A C}$ ，則 $(\alpha, \beta)=\left(\frac{3}{5}, \frac{2}{5}\right)$
（2）若 $\overrightarrow{A P}=x \overrightarrow{A B}+y \overrightarrow{A C}$ ，則 $(x, y)=\left(\frac{9}{20}, \frac{3}{10}\right)$ 。

$\triangle A B C$ 中，若 $\overrightarrow{A B}=(4,2), ~ \overrightarrow{B C}=(-3,-4)$ ，則 $\triangle A B C$ 周長為 $5+3 \sqrt{5}$
$\triangle A B C$ 中，若 $\overrightarrow{A B}=(2,-1), ~ \overrightarrow{A C}=(-3,4)$ ，則 $\triangle A B C$ 周長為 $\sqrt{5}+5 \sqrt{2}+5$ 。設 $A(3,-2), ~ B(7,-5)$ ，若 \vec{c} 為和 $\overrightarrow{A B}$ 同向且長度為 2 的向量，則 $\vec{c}=\left(\frac{8}{5}, \frac{-6}{5}\right)$ 。設 $x(3 \vec{i}-\vec{j})+y(3 \vec{i}+\vec{j})=6 \vec{i}+\vec{j}$ ，試求 $x-y=-1$ 。

設 $\vec{a}=(2,-3), ~ \vec{b}=(-1,4), ~ \vec{c}=(1,6)$ ，若 $\vec{c}=\alpha \vec{a}+\beta \vec{b}$ ，則 $\alpha+\beta=5$設 $\vec{a}=(2,-3), ~ \vec{b}=(-1,4)$ ，若 $2(3 \vec{a}+\vec{b})-3(\vec{a}-\vec{x})=5 \vec{b}$ ，則 $\vec{x}=(-3,7)$ 。設 $\vec{a}=(-1,-2), ~ \vec{b}=(2,3)$ ，若 $\vec{x}+2 \vec{y}=3 \vec{a}-\vec{b}, 2 \vec{x}+3 \vec{y}=\vec{a}-4 \vec{b}$ ，則 $\vec{x}=$ $\underline{(-3,-1)}, \vec{y}=(-1,-4) \quad$.

設 $\vec{a}=(1,1), ~ \vec{b}=(2,4), t$ 為任意實數，則 $|t \vec{a}+\vec{b}|$ 的最小值 $=\sqrt{2}$ ，此時 $t=-3$ 。

C1＿3－2

已知 $|\vec{a}|=3 \sqrt{3}, ~|\vec{b}|=6, ~ \vec{a}$ 與 \vec{b} 的夾角為 30° ，則 $\vec{a} \cdot \vec{b}=27$
$\triangle A B C$ 中，若 $\overline{A B}=2, ~ \overline{A C}=3, ~ \overrightarrow{A B} \cdot \overrightarrow{A C}=-3$ ，則 $\angle A=120^{\circ} \circ$
設 $\vec{a}=(x, y), ~ \vec{b}=(2,-1), ~ \vec{c}=(3,2)$ ，若 $\vec{a} \cdot \vec{b}=5, ~ \vec{a} \cdot \vec{c}=11$ ，試求 $\vec{a}=\underline{(3,1)} 。$

設 $\triangle A B C$ 中，$A(4,-1)$ ，$B(7,-2), ~ C(0,-3)$ ，則 ：
（1） $\overrightarrow{A B} \cdot \overrightarrow{A C}=-10$
（2）$\angle A=135^{\circ}$

如圖，$A B C D E F$ 為邊長是 4 的正六邊形，試求下列各值：
（1） $\overrightarrow{A B} \cdot \overrightarrow{A D}=16$
（2） $\overrightarrow{A B} \cdot \overrightarrow{A E}=0$
（3） $\overrightarrow{A B} \cdot \overrightarrow{A F}=-8$ 。

設 $\vec{a}=(k, k+3), ~ \vec{b}=(1,-5)$ ，則：
（1）若 $\vec{a} / / \vec{b}, k=-\frac{1}{2}$
（2）$\vec{a} \perp \vec{b}, k=-\frac{15}{4}$
$\triangle A B C$ 中，$A(-1,2), ~ B(k,-6), ~ C(13,0)$ ，若 $\angle A B C=90^{\circ}$ ，則 $k=$ \qquad 5 或 7

已知 $|\vec{a}|=2, ~|\vec{b}|=1, \vec{a}$ 和 \vec{b} 夾角為 60° ，若 $3 \vec{a}+\vec{b}$ 和 $\vec{a}+m \vec{b}$ 互相垂直，
試求 $m=$
$=-\frac{13}{4}$
設 $|\vec{a}|=4, ~|\vec{b}|=3 \sqrt{2}, \vec{a}, ~ \vec{b}$ 的夾角為 135° ，求 $|3 \vec{a}-2 \vec{b}|=6 \sqrt{10}$ 。

已知 $|\vec{a}|=2, ~|\vec{b}|=3, ~|\vec{a}-\vec{b}|=\sqrt{7}$ ，則 $\vec{a}, ~ \vec{b}$ 的夾角為 $60^{\circ} 。$
已知 $\vec{a}, ~ \vec{b}$ 為非零向量，且 $|\vec{a}+\vec{b}|=3, ~|\vec{a}-\vec{b}|=3$ ，則 $\vec{a}, ~ \vec{b}$ 的夾角為 $90^{\circ} 。$已知 $\vec{\alpha}+\vec{\beta}+\vec{\gamma}=\overrightarrow{0}, ~|\vec{\alpha}|=|\vec{\beta}|=1, ~|\vec{\gamma}|=\sqrt{3}$ ，則 $\vec{\alpha}$ 與 $\vec{\beta}$ 的夾角為 60°

平行四邊形 $A B C D$ 中，$\overline{A B}=4, ~ \overline{A D}=3$ ，則 $\overrightarrow{A C} \cdot \overrightarrow{B D}=-7$ 。

C1＿3－3

行列式 $\left|\begin{array}{cc}-5 & -8 \\ 2 & 3\end{array}\right|$ 之值為 1 。
$\left|\begin{array}{cc}-5 & -8 \\ 2 & 3\end{array}\right|=-15-(-16)=1$
若 x 滿足 $\left|\begin{array}{cc}x+2 & 1 \\ 3 x & 5\end{array}\right|=0$ ，則 $\left|\begin{array}{cc}x-7 & 2 \\ x & 3 x+1\end{array}\right|$ 之值為 178 。
$\triangle A B C$ 中，$A(1,-2), ~ B(-2,3), ~ C(5,6)$ ，則：
（1） $\overrightarrow{A B} \cdot \overrightarrow{A C}=28$
（2）$\triangle A B C$ 面積 $=22$

設 $\vec{a}=(8,1), ~ \vec{b}=(1,2)$ ，則：
（1）$\vec{a}, ~ \vec{b}$ 所張之三角形面積 $=\frac{15}{2}$
（2）\vec{a} 在 \vec{b} 上的正射影為 $(2,4)$
（3）\vec{a} 在 \vec{b} 上的正射影長為 $2 \sqrt{5}$
設 $\vec{a}=(2,-3), ~ \vec{b}=(1,3), ~ \vec{c}=(1,-3)$ ，若 $(k \vec{a}+\vec{b}) / / \vec{c}$ ，則 $k=-2$
設 $x, ~ y$ 為實數且 $x^{2}+9 y^{2}=10$ ，則 $x+6 y-1$ 的最大值 $=5 \sqrt{2}-1$ ，
最小值 $=-5 \sqrt{2}-1$
設 x ，y 為實數，且 $2 x-3 y=20$ ，則：
（1） $4 x^{2}+3 y^{2}$ 的最小值為 100
（2）此時 $x=\frac{5}{2} \quad, y=\underline{-5}$ 。

設 $\vec{a}=(x, y), ~ \vec{b}=(4,-2)$ ，若 $x^{2}+y^{2}=5$ ，則 $\vec{a} \cdot \vec{b}$ 的最大值為 10
設 $A(-1,3), ~ B(3,6), ~ C(0,5)$ ，若 $\overrightarrow{A B}$ 在 $\overrightarrow{A C}$ 上的正射影為 $\overrightarrow{A D}$ ，則：
（1） $\overrightarrow{A D}=(2,4)$
（2）B 在 $\overleftrightarrow{A C}$ 上的投影點 D 坐標為（ 1,7 ）
（3）$|\overrightarrow{A D}|:|\overrightarrow{A C}|=\underline{2: 1}$ 。
$\triangle A B C$ 中，若 $\overline{A B}=2, ~ \overline{A C}=3, ~ \overrightarrow{A B} \cdot \overrightarrow{A C}=-3$ ，則 $\triangle A B C$ 面積 $=\frac{3 \sqrt{3}}{2} \circ$
設 x ，y 為實數 $(x y \neq 0)$ ，則 $\left(x^{2}+y^{2}\right)\left(\frac{16}{y^{2}}+\frac{9}{x^{2}}\right)$ 的最小值 $=49$ 。

