指數與對數

指數及其運算的意義

重點

指數的運算

- 1. 指數的定義:

其中a稱為「底數」,n稱為「指數」。

- (2) 零指數:設a為實數且 $a \neq 0$,則 $a^0 = 1$,而 $a^0 = 1$,而
- (3) 負整數指數:設 a 為實數且 $a \neq 0$, n 為正整數,則 $a^{-n} = \frac{1}{a^n}$ 。
- (4) 有理數指數:設 a 為正實數,n 為正整數,m 為整數,則 $a^{\frac{1}{n}}=\sqrt[n]{a}$, $a^{\frac{m}{n}}=\sqrt[n]{a^m}=(\sqrt[n]{a})^m$ 。
- 2. **實數指數的指數律:**設 $a \times b$ 為正實數,m與n為任意實數,則
- (1) $a^m \times a^n = a^{m+n} \circ (2) (a^m)^n = a^{mn} \circ (3) a^n \times b^n = (ab)^n \circ$
- 3. 性質:(1) $\frac{a^m}{a^n} = a^{m-n}$ 。 (2) $\frac{a^n}{b^n} = (\frac{a}{b})^n$ 。

難易度 🎳

老師講解

正整數指數

學生演練

- $(1) \ 3 \times 3^2 \times 3^3 \quad (2) \ (3^2)^3 \quad (3) \frac{3^{11}}{3^6}$
- (4) $(\sqrt{5} + \sqrt{2})^3 (\sqrt{5} \sqrt{2})^3$ •

試求下列各式之值:

- $(1) 2^2 \times 2^3 \times 2^4 \quad (2) (2^3)^3$
- $(3) \frac{2^{10}}{2^4} \quad (4) 4^3 \times (\frac{1}{2})^3 \quad \circ$

02 老師講解

零指數和負整數指數

難易度 🎳

試求下列各式之值:

- $(1) (2^{-1})^3 \times 2^{-2} \times 2^6$
- $(2) (10 + \sqrt{7})^0 (10 \sqrt{7})^0 \circ$

試求下列各式之值:

- $(1) 3^{-2} \times (3^{-3}) \times 3^{10}$
- $(2) (4 + \sqrt{13})^0 (4 \sqrt{13}) \circ$

難易度 🎳 😘

03 老師講解

整數指數

學生演練

設a為正實數,若 $a+a^{-1}=5$,試求下列各式之值。

(1)
$$a^2 + a^{-2}$$
 (2) $a^3 + a^{-3}$ °

提示:
$$x^3 + y^3 = (x+y)(x^2 - xy + y^2)$$

設a為正實數,若 $a-a^{-1}=3$,試求下列各式之值。

(1)
$$a^2 + a^{-2}$$
 (2) $a^3 - a^{-3}$ °

提示:
$$x^3 - y^3 = (x - y)(x^2 + xy + y^2)$$

難易度 🎳 😘

老師講解

有理數指數

試求下列各式的值:

$$(1) \sqrt[3]{2^{15}} + 9^{\frac{1}{2}} \times 81^{\frac{3}{4}} \quad (2) (0.25)^{-\frac{3}{2}}$$

$$(3) \left(\frac{125}{64}\right)^{-\frac{1}{3}} \circ$$

試求下列各式的值:

$$(1) \sqrt[6]{3^{18}} + 8^{\frac{1}{3}} \times 32^{\frac{2}{5}}$$
 $(2) (0.36)^{-0.5}$

$$(3) \left(\frac{8}{27}\right)^{-\frac{1}{3}} \circ$$

難易度 🎳 😘

有理數指數

學生演練

試求x+y之值。

設
$$a \cdot b$$
為正實數,若 $\frac{\sqrt[3]{a^2b \times b^{-1}}}{ab^{-2}} = a^x \times b^y$
試求 $x + y$ 之值。

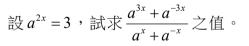
難易度 🎳

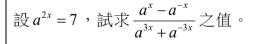
16 老師講解

實數指數

學生演練

已知 $2^x = 5$,試求 8^{x+1} 之值。


已知 $3^x = 7$,試求 9^{x-1} 之值。


難易度 🎳 🖫

07 老師講解

實數指數

學生演練

難易度 🦥 🖫

指數律的運用

設 $x \cdot y$ 皆為實數,且 $26^x = 1000$ 、 $(0.26)^{\nu} = 100$,試求 $\frac{3}{\nu} - \frac{2}{\nu}$ 之值。

設 $x \cdot y$ 皆為實數, 且 $96^x = 16 \cdot 3^y = 32$, 試求 $\frac{4}{r}$ - $\frac{5}{v}$ 之值。

我挑戰

1. 已知 $9^{x} = 2$,試求下列各值:

(1)
$$3^{-x} =$$
 (2) $27^x =$ (3) $9^{-x+1} =$

$$(2) 27^x =$$

$$(3)9^{x+1} =$$

2. 計算下列各式的值:

$$(1) \left[(\sqrt{2})^{-3} \times (\sqrt{2})^6 \right] \div (\sqrt{2})^{-1} = \underline{\qquad} \qquad (2) \left[(-2)^3 \right]^2 - \left[(\sqrt{3})^{-\frac{1}{3}} \right]^6 = \underline{\qquad}$$

$$(2)[(-2)^3]^2 - [(\sqrt{3})^{-\frac{1}{3}}]^6 =$$

$$(3) \ 2(\frac{\sqrt{2}}{7+\sqrt{3}})^0 = \underline{\hspace{1cm}}$$

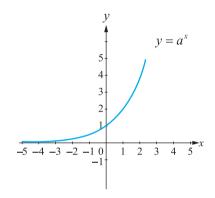
$$(4)(2+\sqrt{7})^4(2-\sqrt{7})^4 = \underline{\hspace{1cm}}$$

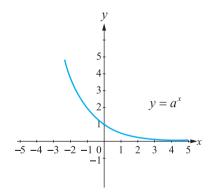
$$(5) \left(\frac{1}{243}\right)^{\frac{2}{5}} \times (0.0625)^{-1.5} \times \sqrt{\frac{1}{2}(\sqrt{2})^{-10}} = \underline{\qquad} \quad \circ$$

- 3. (1) 若 $\sqrt{2} \times \sqrt[3]{8 \times \sqrt[5]{64}} = 4^a$,則 a =
 - (2)已知a、b皆為正實數,且 $(a^3b^{-1})^{\frac{1}{2}} \times b^{-\frac{2}{3}} \times \sqrt[3]{a^{-2}b} = a^m b^n$,則m = ,n =
- 4. 読a > 0,且 $a^1 + a^{-1} = \sqrt{6}$,則 $(1)a^2 + a^{-2} =$ (2) $a^3 + a^{-3} =$ _____ \circ
- **5**. 某放射性物質重 512 公克,半衰期為 2 年(每 2 年重量衰變為原來的 $\frac{1}{2}$),試問
 - (1) 假使過了7年,則剩下 公克。

9-2

指數函數及其圖形




重點

指數函數及其圖形

- 1. **指數函數:**設底數a>0且 $a\neq 1$,指數x為任意實數,則 $y=f(x)=a^x$ 之函數稱為以a為 底數的指數函數。
- 2. **指數函數的圖形:** $y = a^x$ 圖形的性質如下:
 - (1)定義域 (x的範圍): x為任意實數。
 - (2) 值域(y的範圍): y>0, 即 $y=a^x$ 的圖形皆在x軸上方,且和x軸沒有交點。
 - (3) $y = a^x$ 的圖形恆過定點(0,1)。
 - (4) 圖形以 x 軸為漸近線。
 - (5) 底數 a > 1 時, $y = a^x$ 的圖形由左而右一直上升,即 x 值愈大,函數值 y 也愈大,稱 $y = a^x$ 為遞增函數。當 x 值愈小時,圖形愈接近 x 軸。

(6) 底數 0 < a < 1 時, $y = a^x$ 的圖形由左而右一直下降,即 x 值愈大,函數值 y 愈小,稱 $y = a^x$ 為遞減函數。當 x 值愈大時,圖形愈接近 x 軸。

(7) $y = a^x$ 的圖形與 $y = (\frac{1}{a})^x$ 的圖形對稱於 y 軸。

難易度 🎳

01 老師講解

化為同底數再比較大小

試比較下列兩組數值的大小。

(1)
$$a = 4$$
 $b = (\frac{1}{4})^{-1.5}$ $c = \sqrt[3]{16}$

(2)
$$a = \sqrt[3]{0.09}$$
, $b = \sqrt{0.3}$, $c = \frac{27}{1000}$

試比較下列兩組數值的大小。

(1)
$$a = \sqrt{3}$$
 \(b = $\sqrt[3]{9}$ \(c = $\sqrt[5]{27}$

(2)
$$a = 0.7$$
, $b = \sqrt{0.7}$, $c = \sqrt[3]{0.49}$

沙 重點 指數函數圖形的平移

平移函數 $y = a^x$ 的圖形

1. 左右平移:

- (1) 向左平移 h 單位 $\Rightarrow y = a^{x+h}$
- (2) 向右平移 h 單位 $\Rightarrow y = a^{x-h}$ (口訣:右 -左+)

2. 上下平移:

- (1) 向上平移 k 單位 $\Rightarrow y k = a^x$
- (2) 向下平移 k 單位 $\Rightarrow y + k = a^x$ (口訣:上-下+)

難易度 🎳

12 老師講解

指數函數圖形的平移

學生演練

將函數 $y = 2^x$ 的圖形向左平移 2 單位、向下平移 3 單位,所得新函數為何?

將函數 $y = 5^x$ 的圖形向右平移 3 單位、向上平移 2 單位,所得新函數為何?

(2)

重點 指數方程式和指數不等式

- 1. **指數方程式:**先將等式兩邊化為同底數,當 $a^{f_1(x)}=a^{f_2(x)} \Leftrightarrow f_1(x)=f_2(x)$ 。
- 2. 指數不等式: 先將不等式兩邊化為同底數:
 - (1) 當底數a > 1 為遞增函數,則 $a^{f_1(x)} > a^{f_2(x)} \Leftrightarrow f_1(x) > f_2(x)$ 。
 - (2) 當底數 0 < a < 1為遞減函數,則 $a^{f_1(x)} > a^{f_2(x)} \Leftrightarrow f_1(x) < f_2(x)$ 。

難易度 🎳 😘

13 老師講解

指數方程式

學生演練

試求指數方程式 $81^x = \frac{\sqrt[3]{3}}{27}$ 的解。

試求指數方程式 $(\sqrt{2})^{2x-1} = \frac{8}{256^x}$ 的解。

難易度 🌞 🖐

老師講解

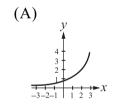
指數不等式

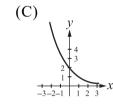
試求指數不等式的解:

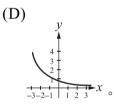
$$(1) 5^{x^2-5} > (\frac{1}{25})^{x+1}$$

(2)
$$(0.008)^{2x-1} > (0.04)^{x+3}$$

試求指數不等式的解:


$$(1) \left(\frac{1}{16}\right)^{x+3} > 4^{x^2-7x}$$


$$(2) (0.09)^{x-3} > (0.0081)^{x+1} \circ$$



自我挑戰

- 1. 請依照方程式填入(A)、(B)、(C)或(D):
 - (1) $y = \frac{1}{2^{-x-1}}$ 的圖形與 _____ 最相近。 (2) $y = 2^{-x-1}$ 的圖形與 _____ 最相近。

- 2. 將函數 $y=2^x$ 的圖形向左平移 1 單位再向下平移 4 單位,所得新函數為y=其圖形和 x 軸的交點坐標為
- 3. 試比較下列各數的大小:

(1)
$$\stackrel{\text{in}}{=} a = (0.2)^3$$
, $b = (0.2)^{\sqrt{2}}$, $c = (0.2)^{-1.5}$, $d = (0.2)^{-\frac{1}{3}}$:

(2)
$$\stackrel{\text{d.t.}}{=} a = \sqrt[6]{4}$$
, $b = (\frac{1}{2})^{-\frac{1}{2}}$, $c = \sqrt[3]{8^{-1}}$, $d = 16^{\frac{1}{3}}$:

- 4. 試解下列各式:
 - $(1) 10^{x^2-3} > (10^x)^2$,求x的範圍:

(2)
$$(0.027)^{\frac{x}{3}-1} > (\sqrt{0.3})^{4x+2}$$
,求 x 的範圍: _____ (3) $(\frac{4}{3})^{3x-7} = (\frac{3}{4})^{-x-5}$,則 $x = ____$ 。

$$(3)(\frac{4}{3})^{3x-7}=(\frac{3}{4})^{-x-5}$$
, $\exists x=$ ______

5. 已知藥物在人體血液中的剩餘量隨著時間遞減,且經過x小時後,血液中的藥物濃度為 指數函數 $f(x) = 800 \times a^x$ (毫克/分升),其中 a 是常數。若人體的藥物濃度低於 50 毫 克/分升時就必須再服藥,今某病患服藥兩小時後,血液中的藥物濃度為400(毫克/ 分升),則此病患下次服藥時間應該為 小時後。

對數及其運算的意義

重點 對數的運算

- 1. **對數的定義:**若 a > 0 且 $a \neq 1$,當 $a^x = b$ 時,我們用符號 $\log_a b$ 來表示 x, 即 $a^x = b \Leftrightarrow \log_a b = x$, 其中 a 稱為 $\log_a b$ 的底數, b 稱為 $\log_a b$ 的真數。
- - (1) $\log_a a = 1$ °
 - (2) $\log_a 1 = 0$ °
 - $(3) \log_a x + \log_a y = \log_a(xy) \circ$
 - $(4) \log_a x \log_a y = \log_a(\frac{x}{v}) \circ$
 - (5) 真數次方: $\log_a(x^n) = n(\log_a x)$ 。
 - (6) 底數次方: $\log_{(a^m)} x = \frac{1}{m} (\log_a x)$ 。
 - (7) 換底公式: $\log_a x = \frac{\log_b x}{\log_a a}$ 。 (其中 b > 0且 $b \neq 1$)
 - (8) 連鎖律: $\log_a b \times \log_b c \times \log_c d = \log_a d$ 。 (其中 $a \times b \times c \times d$ 皆為正實數,且 $a \times b \times c \times d$ 的。) c 皆不等於 1)
 - (9) 倒數關係: $(\log_a x)(\log_x a) = 1 \Leftrightarrow \log_a x = \frac{1}{\log_a a}$ 。
 - $(10) a^{\log_a x} = x \circ$

難易度 🎳

老師講解

對數的定義

下列何者有意義?

- $(1) \log_{1} 7$
- $(2) \log_{(-3)} 3$
- $(3)\log_5 0$

- (4) $\log_3(-3)$ (5) $\log_{\sqrt{2}} 1$ (6) $\log_0 \sqrt{3}$ °

若 $\log_{(2-x)}(x+5)$ 有意義,試求x的範圍。

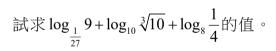
難易度 🍍

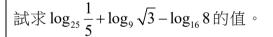
02 老師講解

同底對數相加、相減

學生演練

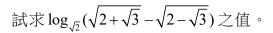
試求 $\log_2 19.2 + \log_2 5 - \log_2 3$ 的值。


試求 $\log_{10} 75 + \log_{10} 4 - \log_{10} 3$ 的值。


難易度 🍍

3 老師講解

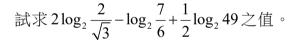
對數的運算

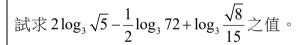


難易度 🎳 😘

04 老師講解

對數的運算


試求
$$\log_2(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}})$$
之值。


難易度 🎳 👸

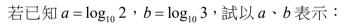
05 老師講解

對數的運算

學生演練

難易度 🎳 😘

試求 $(\log_9 4 + \log_{\sqrt{3}} \sqrt{8})(\log_4 27 - \log_2 \sqrt{3})$ 之值。


試求 $(\log_{\sqrt{5}}9 + \log_{25}3)(\log_925 - \log_3\sqrt{5})$ 之值。

難易度 🎳 😘

老師講解

換底公式

學生演練

(1) $\log_{10} 5$ (2) $\log_{10} \sqrt{150}$ (3) $\log_5(\frac{4}{3})$ °

若已知 $a = \log_{10} 2$, $b = \log_{10} 3$,試以 $a \cdot b$ 表示:

(1) $\log_{10} \sqrt{18}$ (2) $\log_6 5$ °

難易度 🦫

試求 $2^{\log_2 3} - 25^{\log_5 2} + 3^{2\log_3 \sqrt{2}} - 10^{\frac{\log_5 7}{\log_5 10}}$ 之值。

試求 $7^{2\log_7 3} - 9^{\log_3 5} + \sqrt{6}^{\log_4 8} + 8^{\frac{\log_6 5}{\log_6 8}}$ 之值。

自我挑戰

- 1. 試求下列各值:
 - (1) $\log_3 \frac{1}{27} =$ _____ (2) $\log_{999} 1 =$ ____ (3) $\log_{\frac{1}{7}} \sqrt[3]{16} =$

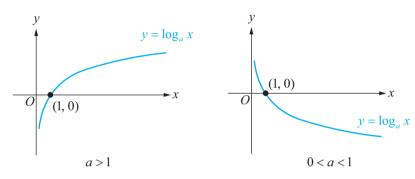
- (4) $\log_{0.1} 10000 =$
- 2. 若 $\log_{(x+1)}(-2x+7)$ 有意義,試求 x 的範圍:
- 3. 計算下列各值:
 - (1) $\log_{10} 20 + 2\log_{10} \sqrt{30} \frac{2}{3}\log_{10} \sqrt{216} = \underline{\hspace{1cm}}$
 - (2) $(\log_2 27 \log_4 9)(\log_3 16 \log_{\frac{1}{2}} 2) =$ _____
 - (3) $\log_3 5 \times \log_{125} 13 \times \log_{13} 9 =$
 - $(4) \ 2^{\log_2 5} + 4^{\log_2 \sqrt{3}} 3^{\frac{\log_5 9}{\log_5 3}} =$
- 4. 設 $a = \log_{10} 2$, $b = \log_{10} 3$,試以a、b表示下列各式:
 - $(1) \log_{10} \sqrt{54} = \qquad (2) \log_{12} 15 =$
- $ot s_{0}$ 5. 目前國際使用「芮氏規模」來表示地震的強度,設E(r)為地震「芮氏規模r」震央所釋 放出來的能量(單位: erg 爾格),r與E(r)的關係如下:

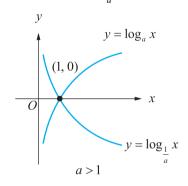
$$\log_{10} E(r) = 11.8 + 1.5r$$
 \circ

若「芮氏規模 5」的地震,其震央所釋放的能量為 E(5);「芮氏規模 3」的地震震央所 釋放能量為E(3),試求 $\frac{E(5)}{E(3)} = ____$ 。

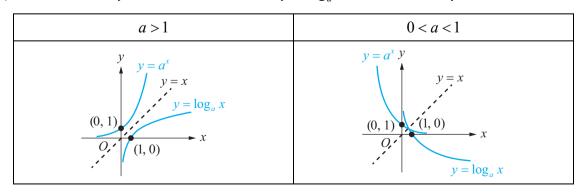
單 元 9

9-4


對數函數及其圖形



重點 對數函數及其圖形


- 1. **對數函數:**設 a > 0 , $a \neq 1$, x > 0 ,則 $y = f(x) = \log_a x$ 為以 a 為底數的對數函數。
- 2. **對數函數的圖形:** $y = \log_a x$ 圖形的性質如下
 - (1)定義域 (x的範圍): x>0, 即 $y=\log_a x$ 的圖形皆在 y 軸右方, 和 y 軸沒有交點。
 - (2) 值域(y 的範圍): y 為任意實數。
 - (3) $y = \log_a x$ 的圖形恆過定點(1,0)。
 - (4) 圖形以 y 軸為漸近線。
 - (5)底數 a > 1時, $y = \log_a x$ 為遞增函數;底數 0 < a < 1時, $y = \log_a x$ 為遞減函數。

(6) 當底數互為倒數時, $y = \log_a x$ 與 $y = \log_{\underline{1}} x$ 兩者之圖形對稱於x軸。

(7) 指數函數圖形 $y = a^x$ 與對數函數圖形 $y = \log_a x$ 必對稱於直線 y = x。

難易度 🎳

11 老師講解

化為同底數,再比大小

試比較下列兩組數值的大小:

(1)
$$a = \log_3 \sqrt{7}$$
 $b = \log_{\sqrt{3}} 7$ $c = \log_{\sqrt{3}} \sqrt{7}$

(2)
$$a = \log_{0.5} \sqrt{3}$$
 $b = \log_{0.5} \frac{1}{3}$ $c = \log_{0.5} 0.25$ \circ

試比較下列兩組數值的大小:

(1)
$$a = \log_{\sqrt{2}} \sqrt{7}$$
 \(\dot b = \log_2 6\) \(\dot c = \log_4 25\)

(2)
$$a = \log_{\frac{1}{3}} \sqrt{5}$$
 $b = \log_{\frac{1}{3}} 3$ $c = \log_{\frac{1}{9}} 4$ \circ

愛 重點 對數函數圖形的平移

平移函數 $y = \log_a x$ 的圖形

1. 左右平移:

- (1) 向左平移 h 單位 $\Rightarrow y = \log_a(x+h)$ 。
- (2) 向右平移 h 單位 $\Rightarrow y = \log_a(x-h)$ 。 (口訣:右-左+)

2. 上下平移:

- (1) 向上平移 k 單位 $\Rightarrow y k = \log_a x$ 。
- (2) 向下平移 k 單位 $\Rightarrow y + k = \log_a x$ 。 (口訣:上-下+)

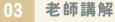
難易度 🎳

02 老師講解

對數函數圖形的平移

學生演網

將函數 $y = \log_2 x$ 的圖形向左平移 2 單位、向下平移 3 單位,所得新函數為 $y = \log_2 (ax + b)$,則 a + b = ?

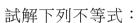

將函數 $y = \log_3 x$ 的圖形向右平移 3 單位、向上 平移 2 單位,所得新函數為 $y = \log_3(ax + b)$, 則 a + b = ?

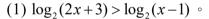
- 1. **對數方程式:**先將等式兩邊化為同底數,當 $\log_a f_1(x) = \log_a f_2(x) \Leftrightarrow f_1(x) = f_2(x)$ 。(真數相等且真數大於 0)
- 2. 對數不等式: 先將不等式兩邊化為同底數:
 - (1) 當底數 a>1 為遞增函數,則 $\log_a f_1(x)>\log_a f_2(x)\Leftrightarrow f_1(x)>f_2(x)$ 且真數大於 0。
 - (2) 當底數 0 < a < 1為遞減函數,則 $\log_a f_1(x) > \log_a f_2(x) \Leftrightarrow f_1(x) < f_2(x)$ 且真數大於 $0 \circ$

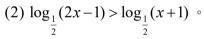
難易度 ※※

對數方程式

試解方程式 $\log_3(x^2+7x+1)-\log_3(x+4)=2$ 。


試解方程式 $\log_{10}(x-2) + \log_{10}(x+1) = 1$ 。


難易度 🌞 🐃 🐃

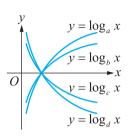

04 老師講解

對數不等式

學生演練

試解下列不等式:

(1)
$$\log_{0.5}(x-3) > \log_{0.5}(2x-5)$$
 °


(2)
$$\log_{2.5}(x+1) > \log_{2.5}(3x-5)$$
 °

自我挑戰

- 1. 右圖為四個對數函數的圖形,試比較底數 $a \cdot b \cdot c \cdot d$ 的大小順序:
- 2. 已知 $A \cdot B$ 兩點在 $y = \log_2 x$ 的圖形上,<u>小紫</u>不小心將 $A \cdot B$ 兩點的坐標弄髒了,只知道 A 點的 x 坐標為 $8 \cdot B$ 點的 y 坐標為 -1,試幫 <u>小紫</u> 算出直線 AB 的斜率 =

- 3. 將函數 $y = \log_2 x$ 的圖形向右平移 $\frac{1}{2}$ 單位、向上平移 2 單位,所得新函數為 $y = \log_2(ax + b)$,則數對 $(a,b) = _____$ 。
- 4. 試比較下列各數的大小:

(1)
$$a = \log_{\frac{1}{2}} 3$$
, $b = \log_{4} 9$, $c = \log_{\sqrt{2}} \sqrt{7}$, $d = \log_{2} 5$:

(2)
$$a = \log_{\frac{1}{3}} \sqrt{3}$$
, $b = \log_{\frac{1}{3}} \sqrt{2}$, $c = \log_{\frac{1}{3}} \frac{1}{2}$, $d = \log_{\frac{1}{3}} \frac{1}{3}$:

- 5. (1) 若方程式 $\log_{12} x + \log_{12} (x-4) = 1$,則 x =
 - (2) 已知不等式 $\log_{\frac{1}{4}}(x-4) > \log_{\frac{1}{4}}(6-x)$,求x的範圍:_____。

9-5

常用對數及其應用

重點 常用對數

- 1. **常用對數:**底數為 10 的對數,其中底數 10 可以省略,如: $\log_{10} x = \log x$ 。
- 2. **首數與尾數:**任何正實數 x 都可用科學記號表示成 $x = a \times 10^n$,其中 $1 \le a < 10$,n 為整數。可知 $\log x = \log(a \times 10^n) = \log a + \log 10^n = n + \log a$,其中整數 n 為 $\log x$ 的「首數」,小數 $\log a$ 為 $\log x$ 的「尾數」。

 $(\because 1 \le a < 10$ $\therefore \log 1 \le \log a < \log 10 \Rightarrow 0 \le \log a < 1$,故 $\log a$ 為 0 或正純小數)

- 3. **首數的性質:**若 $\log x = n + \log a$, n 為首數 , $\log a$ 為尾數 , 則 :
 - (1) 首數 $n \ge 0$ 時,真數 x 的整數部分有 n+1位數字。
 - (2)首數n<0時,真數x自小數點後第(-n)個開始出現不為零的數字。

難易度 🌞 👸

老師講解

利用已知對數求其它對數值

- 已知 log 28.37 = 1.4529, 試求:
- $(1) \log 2837 = ?$
- (2)若 log x = -3.5471,試求 x = ?

已知 log 2.345 = 0.3701, 試求:

- $(1) \log 2345 = ?$
- (2)若logx = -2.6299,試求x = ?

難易度 🎳 😘

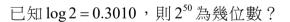
02 老師講解

求常用對數值

已知 $\log 2 = 0.3010$, $\log 3 = 0.4771$,試求下列各 小數的近似值:

(1) $\log 15$ (2) $\log \frac{3}{\sqrt[5]{2}}$ °

已知 $\log 2 = 0.3010$, $\log 3 = 0.4771$,試求下列各小數的近似值:


(1)
$$\log 72$$
 (2) $\log \frac{6}{\sqrt{5}}$ °

難易度 🎳 😘

03 老師講解

首數性質

學生演練

已知 log 7 = 0.8451,則 7²⁰ 為幾位數?

難易度 🤏 🦫

04 老師講解

首數性質

學生演練

已知 $\log 3 = 0.4771$,則 $(\frac{1}{3})^{30}$ 自小數點後第幾位 開始數字不為零?

已知 $\log 2 = 0.3010$,則 $(\frac{1}{2})^{50}$ 自小數點後第幾位 開始數字不為零?

難易度 ※※※

05 老師講解

常用對數求範圍

學生演練

已知 $\log 2 = 0.3010$, $\log 3 = 0.4771$, 若 $(\frac{1}{6})^x < 10^{-8}$,則最小正整數 x 為何 ?

已知 $\log 3 = 0.4771$,若 $3^x > 10^8$,則最小整數 x 為何?

自我挑戰

- 1. 試求下列之值:
 - (1) $\log x = 6.5312$,則 $\log x$ 的首數為 _____,尾數為 _____
 - (2) $\log y = -6.5312$,則 $\log y$ 的首數為 _____, 尾數為 _____。
 - (3) $\log 3.45 = 0.5378$, $\Im \log 345000 = 0.00345$
- 2. 已知 $\log 2 = 0.3010$,則 5^{20} 是 位數。
- 3. 已知 $\log 3 = 0.4771$,則 $(\frac{1}{3})^{100}$ 自小數點後第 _____ 位開始出現不為 0 的數。
- 素 5. 碳 14 定年法是用來測量動植物生存年代的方法。動植物體內自然存在的碳 14 同位素,在死亡後會衰變,其半衰期為 5730 年。今一化石組織內的碳 14 含量僅為正常的十分之一,則此化石生存年代距今約 ______ 年。(已知 log 2 = 0.3010,四捨五入取到整數位)

- () 1. 小倩在一家營運穩定的公司上班。若小倩的起薪為每個月4萬元,且每年會調薪2%,即一年後為40000×1.02元,兩年後為40000×(1.02)²元,以此類推。試問幾年後小倩的月薪最接近8萬元?(已知log1.02≈0.0086)
 - (A) 29 (B) 31 (C) 33 (D) $35 \circ$

【113(B),答對率 24%】

- () 2. 某次考試,老師出了一張滿分為 100 分的試卷,但因考後成績不理想,因此進行全班成績調整,若原始成績為 x 分,則調整後成績為 50×log₁₀ x 的整數部分。 已知這次考試沒有人缺考且最低分數為 2 分,則下列敘述何者錯誤?
 - (A)考 100 分的同學調整前後的分數不變
 - (B)考 10 分的同學調整後的分數不到 60 分
 - (C)調整後全班的最低分是 16 分
 - (D)若某同學的原始成績是 16 分,則其調整後的成績為 60 分。

【113(B),答對率 47%】

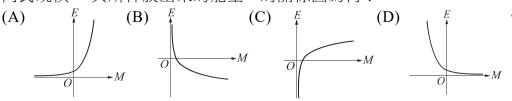
- () 3. 若 $\log x = -2.24$, $\log y = 9.28$,則 x^2y 落在下列哪個區間? (A) $(10^3, 10^4)$ (B) $(10^4, 10^5)$ (C) $(10^5, 10^6)$ (D) $(10^6, 10^7)$ 。【113(C),答對率 40%】
- () 4. 根據建築物之耐震規範,某類鋼構造建築物之基本振動週期T(單位為秒)之經驗公式為 $T=0.085h^{\frac{3}{4}}$,其中h為地面到屋頂之高度(單位為公尺)。若A、B 為兩棟屬於這類的鋼構造建築物,已知A的基本振動週期為B的 2 倍,且B的 高度為 100 公尺,則A的高度約多少公尺?(已知 $\sqrt[3]{2} \approx 1.260$)

(A)159 (B)168 (C)252 (D)283 °

【113(C),答對率 35%】

() 5. 小明與小亮大學畢業後隨即找到工作,第一年兩人的起薪都是月薪三萬元,之 後每年年初時調薪,月薪的上限皆為八萬元。小明的公司調薪方式是月薪比前 一年月薪多 3000 元,小亮的公司調薪方式是月薪比前一年月薪多 3%。若小明 和小亮的月薪到達八萬元的時間分別為x與y年,則x-y=?

(已知 $\log 1.03 \approx 0.0128$ 、 $\log 2 \approx 0.301$ 、 $\log 3 \approx 0.4771$)


(A)17

(B) 13 (C) -13

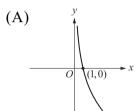
(D) $-17 \circ$

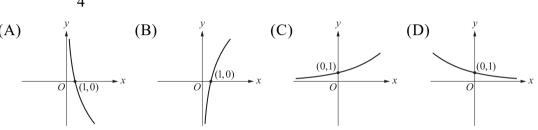
【112(C), 答對率 32%】

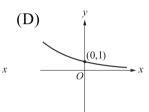
() 6. 目前國際上使用芮氏規模來表示地震的強度,設E(單位:爾格)為地震芮氏規模M時所釋放出來的能量,其中M與E的關係如下: $\log E = 11.8 + 1.5M$,則芮氏規模M與所釋放出來的能量E的關係圖為何?

【112(C),答對率 45%】

(


(A) $7^x = 3$ (B) $3^x = 7$ (C) $x^7 = 3$ (D) $x^3 = 7$ \circ 【111(C),答對率 57%】


() 8. 為了響應節能減碳政策,某公司基於成本考量決定在六年後將公司該年二氧化 碳排放量降為目前排放量的50%。公司希望每年依固定的比率r(當年和前一 年排放量的比)逐年降低二氧化碳的排放量。若要達到這項目標,則下列敘述 何者正確? (已知 log 8.91≈0.950)


(A) 0.91 < r < 0.93 (B) 0.88 < r < 0.91 (C) 0.85 < r < 0.88 (D) 0.82 < r < 0.85

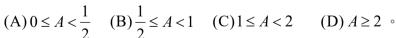
【111(C),答對率 33%】

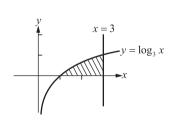
) 9. 若 $f(x) = (\frac{\pi}{4})^x$,則下列何者為 f(x)之圖形? (

【110(B), 答對率 24%】

) 10. 若 $a = \log 2$, $b = \log 3$, 則 $10^{2a+b} = ?$ (

(A) 2 (B) 3 (C) 12 (D) $24 \circ$


【110(B), 答對率 52%】


) 11. 設 I(t) 為 A 城市某種傳染病在時間 t 的感染率,且 $I(t) = \frac{1}{1 + 40(7^{-\frac{t}{3}})}$, $t \ge 0$ 。若 a 、 (

 $b \cdot c$ 分別表示 $t=0 \cdot t=3 \cdot t=6$ 時的 感染率,則下列何者正確?

- (A) b = 6a (B) c = 20a (C) c = 4b (D) b = 7a · 【110(C),答對率 57%】

- () 12. 假設 A 表函數 $y = \log_3 x$ 圖形與直線 $y = 0 \cdot x = 3$ 所圍區域 而積,如圖。若以幾何圖形的觀念來判斷 A 的大小範圍, 則下列何者正確?

【110(C),答對率 47%】

) 13. 2¹⁰⁰⁰ 大約等於下列何者? (

- $(A)10^{100}$ $(B)10^{200}$ $(C)10^{300}$ $(D)10^{400}$ °

【109(B), 答對率 33%】

) 14. 若 $a + a^{-1} = 2$,則 $a^3 + a^{-3} = ?$ (

 $(A)2 (B)4 (C)6 (D)8 \circ$

【109(B), 答對率 32%】

() 15. 滿足 log_{10-x²} (x²+3x+2) 有意義的整數 x 共有多少個?
 (A) 3 (B) 4 (C) 5 (D) 7。
 【109(C),答對率 28%】

() 16. 設 $(3^m)^3 = 729$ 且 $4^{n-m} = \frac{1}{256}$,則 m+n=? (A) -1 (B) 0 (C) 1 (D) 2 。 【 108(B),答對率 53%】

() 17. 下列何值與 $\log_2 5$ 相等 ? $(A) \log 5 - \log 2 \quad (B) \log (\frac{5}{2}) \quad (C) \frac{\log 50}{\log 20} \quad (D) \frac{\log 25}{\log 4} \circ \qquad \texttt{【108(B), 答對率 38%】}$

() 19. 已知 $\log_4(4^x-2^x+52)=x+1$,試問 $\log(x^2\times 5^x)=?$ (A)2 (B)3 (C)4 (D)5。 【108(C),答對率 29%】

() 20. 若 $x = \frac{\log_{10} 7}{\log_{10} 9}$,則 $81^x = ?$ (A) 3 (B) 7 (C) 25 (D) $49 \circ$ 【 107(C),答對率 40% 】

() 21. 設 $a = \log_{0.3} 0.5$, $b = \log_3 5$, $c = \log_{30} 50$,則 a 、 b 、 c 大小順序為何? $(A) c > b > a \quad (B) b > a > c \quad (C) b > c > a \quad (D) a > b > c$ 《【107(C),答對率 32%】

() 22. 求 $(0.027)^{\frac{2}{3}} + (\frac{243}{32})^{\frac{1}{5}}$ 的值。 (A) $\frac{2}{32}$ (B) $\frac{159}{100}$ (C) $\frac{12}{5}$ (D) $\frac{81}{32}$ 。 【 106(B),答對率 48%】

() 23. 設 $a = (\frac{1}{2})^{\frac{1}{2}}$, $b = (\frac{1}{3})^{\frac{1}{3}}$, $c = (\frac{1}{6})^{\frac{1}{6}}$,則 $a \cdot b \cdot c$ 大小順序為何?

(A) a > c > b (B) a > b > c (C) c > a > b (D) b > c > a。【106(C),答對率 28%】

() 24. 已知 $\log_{10} 3 = 0.4771$ 且 $x = (\frac{1}{3})^{20}$,其中 $\log_{10} x$ 的首數為 m,而尾數的小數點後第一位數字 n,則 m+n=? (A) -9 (B) -7 (C) -6 (D) -5 。 【106(C),答對率 40%】