

# 三角函數的應用



## 8-1 和差角公式





### 和角及差角公式

- 1. 正餘弦函數的和、差角公式:
  - (1)  $\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$
  - (2)  $\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$
- 2. 正切函數的和、差角公式:

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta} \circ$$

NOTE 只需熟記 sin、cos、tan 三組和差角公式,其餘 cot、sec、csc 的和差角,可由倒數關係求得。

### 難易度 🍅 🛎

01 老師講解

和差角公式

學生演練



試求  $\sin(\theta + 60^{\circ})\cos(\theta + 90^{\circ})$ 

$$-\cos(\theta+60^{\circ})\sin(\theta+90^{\circ})$$
之值。

試求 
$$\frac{\tan 22^\circ + \tan 113^\circ}{1 - \tan 22^\circ \tan 113^\circ}$$
之值。

### 難易度 🎳 🖫

### 老師講解

### 和差角公式





已知
$$\frac{\pi}{2} < \alpha < \pi$$
 , $\frac{3\pi}{2} < \beta < 2\pi$  , $\sin \alpha = \frac{4}{5}$  ,
$$\tan \beta = \frac{-5}{12}$$
 ,試求 $\sin(\alpha + \beta)$ 之值。

已知 
$$\sin \alpha = \frac{-3}{5}$$
 且  $\tan \alpha > 0$  ,  $\cos \beta = \frac{12}{13}$  且  $\sin \beta < 0$  ,試求  $\cos(\alpha - \beta)$  之值 。

### 難易度 ※※※

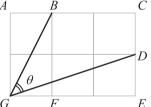
### 3 老師講解

### 和差角公式應用

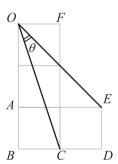
學生演練



右圖中六個小方格均為 $^A$  正方形,試求  $\tan \theta$ 之值。



右圖中四個小方格均為正方 形,試求 an heta之值。



#### 難易度 🌞 🗳 🤴

#### 老師講解

### 和差角公式的應用



若  $\tan \alpha$  、  $\tan \beta$  為 方程 式  $x^2 - 2x - 5 = 0$  之 二 | 若  $\tan \alpha$  、  $\tan \beta$  為 方程 式  $x^2 - x - 4 = 0$  之 二根 , 根,試求:(1)  $tan(\alpha+\beta)$  (2)  $sec^2(\alpha+\beta)$ 。

試求:(1)  $tan(\alpha + \beta)$  (2)  $cot(\alpha + \beta)$  °

#### 二倍角公式 重點

- 1.  $\sin 2\theta = 2\sin \theta \cos \theta$
- 2.  $\cos 2\theta = \cos^2 \theta \sin^2 \theta = 1 2\sin^2 \theta = 2\cos^2 \theta 1$
- 3.  $\tan 2\theta = \frac{2 \tan \theta}{1 \tan^2 \theta}$
- NOTE ①以上公式可由和角公式中,令 $\alpha = \beta = \theta$ 代入求得。
  - ②  $\cos 2\theta$  公式可由平方關係  $\sin^2 \theta + \cos^2 \theta = 1$  代換  $\cos^2 \theta$  及  $\sin^2 \theta$  求得另二組公式。

#### 難易度 🍅 😮

## 老師講解

### 二倍角公式



(1) 
$$\sin 2\theta + \cos 2\theta$$
 (2)  $\tan 2\theta$  °

若 
$$\tan \frac{\theta}{2} = \frac{3}{4}$$
 ,  $\pi < \frac{\theta}{2} < \frac{3\pi}{2}$  , 試求:

 $(1) \sin \theta$   $(2) \cos \theta$  °

#### 難易度 🎳 👸

#### 06 老師講解

### 二倍角公式





若  $\cos 2\theta = \frac{3}{5}$  ,  $\frac{3\pi}{2} < \theta < 2\pi$  , 試求:

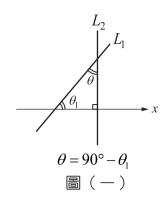
 $(1) \sin \theta \quad (2) \cos \theta \quad$ 

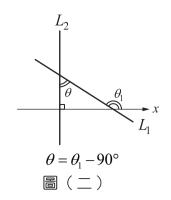
若 
$$\cos 2\theta = \frac{4}{5}$$
 ,  $\pi < \theta < \frac{3\pi}{2}$  ,試求:

 $(1) \sin \theta \quad (2) \cos \theta \quad \cdot$ 

## ● 重點 兩直線的夾角

- 1. 兩直線  $L_1 \times L_2$ 之斜角分別為  $\theta_1 \times \theta_2$ ,且均不垂直 x 軸( $\theta_1 \times \theta_2$ 均不等於  $90^{\circ}$ ),斜率分別為  $m_1 \times m_2$ ( $m_1 = \tan \theta_1$ , $m_2 = \tan \theta_2$ ),若兩直線夾角  $\theta$ ( $\theta$ 為銳角),則  $\tan \theta = \left| \frac{m_1 m_2}{1 + m_1 \times m_2} \right|$ ,且另一個夾角為  $180^{\circ} \theta$ 。
  - NOTE 兩直線夾角有兩組且互補,  $\tan\theta$  取絕對值意在先求出銳角夾角 $\theta$ ,再由  $180^{\circ}-\theta$  求出另一鈍角夾角。
- 2. 兩直線  $L_1 \cdot L_2$ 之斜角分別為  $\theta_1 \cdot \theta_2$ ,其中  $L_2$ 垂直 x軸( $\theta_2 = 90$ °),若兩直線夾角  $\theta$ ( $\theta$  為銳角),則  $\theta = |90^\circ \theta_1|$ ,且另一個夾角為  $180^\circ \theta$ 。
  - NOTE  $\theta_2 = 90^\circ \Rightarrow m_2 = \tan 90^\circ$ 不存在,所以可由圖(一)、圖(二)找出夾角  $\theta$ 和  $L_1$  斜角  $\theta_1$  之關係:





#### 難易度 🎳 😘

### 07 老師講解

### 二直線夾角公式

學生演練



試求兩直線 $L_1: \sqrt{3}x + y - 1 = 0$ 和  $L_2: \sqrt{3}x - y - 2 = 0$ 之夾角。 試求兩直線  $L_1: x - \sqrt{3}y + 1 = 0$  和  $L_2: x - 2 = 0$  之 夾角。

## 正餘弦函數的疊合

### 正餘弦函數的疊合與極值:

 $a\sin\theta\pm b\cos\theta$ 可化成 $\sqrt{a^2+b^2}(\frac{a}{\sqrt{a^2+b^2}}\sin\theta\pm\frac{b}{\sqrt{a^2+b^2}}\cos\theta)$ (其中a、b不全為0),

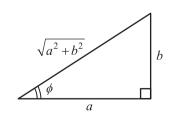
$$\Rightarrow \cos \phi = \frac{a}{\sqrt{a^2 + b^2}}$$
,  $\sin \phi = \frac{b}{\sqrt{a^2 + b^2}}$ 

 $\Rightarrow a\sin\theta \pm b\cos\theta = \sqrt{a^2 + b^2} (\sin\theta\cos\phi \pm \cos\theta\sin\phi) = \sqrt{a^2 + b^2} \sin(\theta \pm \phi)$ 

$$\therefore -1 \le \sin(\theta + \phi) \le 1 \Rightarrow \boxed{-\sqrt{a^2 + b^2}} \le a \sin \theta \pm b \cos \theta \le \sqrt{a^2 + b^2}$$



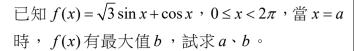
$$\cos \phi = \frac{b}{\sqrt{a^2 + b^2}} \Rightarrow a \sin \theta \pm b \cos \theta = \sqrt{a^2 + b^2} \cos(\theta \mp \phi) \circ$$



## 難易度 🤴 🦫

#### 老師講解

### 疊合求極值



試求  $f(x) = 2\sin x + \sqrt{5}\cos x + 3$  ,  $0 \le x < 2\pi$  之最 大、最小值。



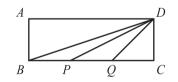
1. 試求下列各值:

$$(1) \sin 15^{\circ} =$$

$$(2)\cos(30^{\circ} + \theta)\cos(90^{\circ} - \theta) - \sin(30^{\circ} + \theta)\sin(90^{\circ} - \theta) =$$

(3) 
$$\cot 15^{\circ} =$$
  $\circ$ 

3. 設 ABCD 為一矩形,且  $\overline{BC} = 3\overline{AB}$ 。 令 P 點與 Q 點為  $\overline{BC}$  上的點, 且 $\overline{BP} = \overline{PQ} = \overline{QC}$ ,如右圖。若 $\angle DBC = \alpha$ ,且 $\angle DPC = \beta$ , 則  $tan(\alpha + \beta)$  之值為 。



4.  $\tan \alpha$ 、  $\tan \beta$  為方程式  $x^2 - 3x - 1 = 0$  之兩根,則  $\tan(\alpha + \beta) =$ 

5. 已知 
$$\tan \theta = -2$$
 且  $\frac{3\pi}{2} < \theta < 2\pi$  ,則  $\sin 2\theta + \cos 2\theta =$  \_\_\_\_\_\_。

6. 已知 
$$\cos 2\theta = \frac{3}{5}$$
,則  $\sin^4 \theta - \cos^4 \theta =$ 

7. 已知 
$$\sin \theta + \cos \theta = \frac{3}{5}$$
,則  $\sin 2\theta =$ 

8. 試求兩直線 
$$L_1: x-3y-2=0$$
和  $L_2: x+2y+3=0$ 之夾角為

## 8-2

## 三角測量





### 重點

### 平面三角測量

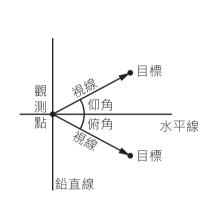
#### 1. 測量用詞解釋:

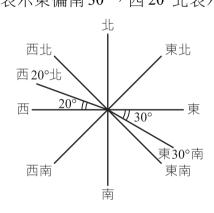
(1)鉛直線:與地平線垂直的直線。 (2)水平線:與地平線平行的直線。

(3)視線:觀測者眼睛與目標物之連線。

(4) 仰角:仰視目標時,視線與水平線之夾角。 (5) 俯角:俯視目標時,視線與水平線之夾角。

(6) 方位:目標物所在的方向,除常用方位東、西、南、北、東北、東南、西北、西南之外,也可以角度輔助描述,如東30°南表示東偏南30°,西20°北表示西偏北20°。





#### 2. 解題方法:

- (1)依題意畫出示意圖。
- (2) 由圖形中各三角形之邊角關係列出關係式。
- (3)常利用特別角(30°、45°、60°)直角三角形邊長比例求長度,或用正餘弦定理及 畢氏定理列出等式。

難易度 ∵ ∵

2 老師講解

### 三角測量

學生演練



小王在路邊測得一大樓仰角為30°,向大樓前 進20公尺再測仰角為45°,試求大樓高度。 小明在樓頂觀測  $A \cdot B$  兩輛車之俯角分別為  $30^{\circ}$  和  $45^{\circ}$  ,已知樓高 30 公尺,試求  $A \cdot B$  兩車之距離。

#### 難易度 🎳 👸

02 老師講解

### 三角測量(正餘弦定理)

學生演練

練

由  $A \cdot B$  兩觀測臺觀察一目標 C ,已知  $\overline{AB} = 50$  公尺,  $\angle CAB = 75^{\circ}$  ,  $\angle CBA = 60^{\circ}$  , 試求  $\overline{AC}$  距 離 。

欲測量一湖泊寬度,在岸上設一觀測點A,量測A與湖泊兩端點B、C之距離分別為 3 公里及 2 公里,且  $\angle BAC = 60^{\circ}$ ,試求湖泊寬。

難易度 🍎 🌣 🤴

03 老師講解

### 三角測量(立體)



南行走 20 公尺後,再測仰角為30°,試求大 樓之高度。

小玲在大樓正東方測得樓頂之仰角為45°,向 | 老王在一高塔正西方測得塔頂仰角為60°,向 南行走 10 公尺後,再測仰角為45°,試求塔 高。



### 自我挑戰

- 1. 地面上二點  $B \cdot C$  被一池塘隔開,在地面上找一點 A,量得  $\overline{AB} = 80$  公尺,  $\overline{AC} = 50$  公尺, 並測得 $\angle CAB = 60^{\circ}$ ,則 $\overline{BC}$ 長為 公尺。
- = 2. 某人在地面 <math> A處測得路思義教堂的仰角為 $= 30^\circ$ ,再往教堂方向前進= 100公尺的= B處,測 得教堂的仰角為60°,則此教堂的高度為 公尺。
- 在其正西方,此時船與三貂角燈塔的距離為 浬。
- 若由A點向東直行 200 公尺到B點測量時,八仙山在他的西邊偏北 $60^{\circ}$ ,求山高是 公尺。
- 素 5. 小敏於山腳下測得墾丁大尖山山頂的仰角為 45°,由山腳循 30°斜坡上行 200 公尺,再 測得山頂的仰角為60°,求山高是 公尺。

## 8-3

## 複數平面



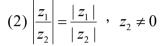
# 8

## **重點** 複數平面與複數絕對值

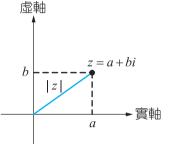
- 1. **複數平面:**將橫軸定義為實軸,縱軸定義為虛軸。任一複數 z = a + bi ( $a \cdot b$  均為實數) 的實部 a ,虛部 b 組成的數對 (a,b) 可對應至複數平面上的點 (a,b) 。
- 3. 複數絕對值的運算性質:

設複數 $z_1$ 、 $z_2$ 為複數,則:

 $(1) |z_1 \times z_2| = |z_1| \times |z_2|$ 



- $(3) |z_1^n| = |z_1|^n$
- $(4) \mid \overline{z_1} \mid = |\overline{z_1}|$
- (5)  $z_1 \times \overline{z_1} = |z_1|^2 \circ$

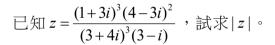


### 難易度 🎳 😘

### 01 老師講解

### 複數絕對值

學生演練



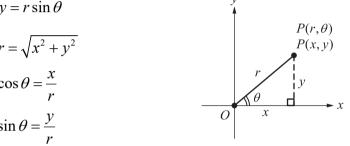
已知 
$$z = \frac{(\sqrt{3}-i)(1-2i)^3}{(2+i)^2(3-4i)}$$
 , 試求 |  $z$  |  $\circ$ 

# 極坐標與坐標轉換

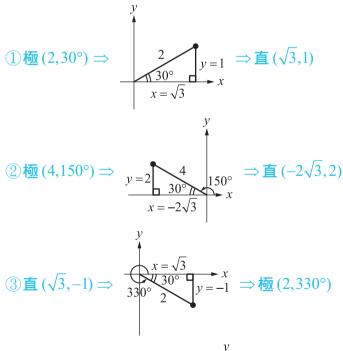
- 1. **極坐標:**平面上以始點O向右作一水平射線 $\overrightarrow{OX}$ ,P為平面上任一點,且 $\overrightarrow{OP} = r > 0$ ,  $\angle POX = \theta$ ,則P點位置可用數對 $(r,\theta)$ 描述, $(r,\theta)$ 稱為點P的極坐標。其中O稱為極點, $\overrightarrow{OX}$ 稱為極軸,r稱為向徑, $\theta$ 稱為輻角。
  - NOTE 極坐標表示法並不唯一,  $P(r,\theta) = P(r,\theta \pm 2n\pi)$  ( n 為整數 ) , 例  $P(2,30^\circ) = P(2,390^\circ) = P(2,750^\circ) = \cdots$  , 取  $\theta$  之最小正同界角 (  $0 \le \theta < 2\pi$  ) 稱為主輻角  $\circ$
- 2. 極坐標與直角坐標的轉換:

平面上P點的直角坐標為(x,y),極坐標為 $(r,\theta)$ ,則 $(r,\theta)$ 與(x,y)的關係如下:

(1)極坐標  $(r,\theta)$  化成直角坐標 (x,y) :  $\begin{cases} x = r\cos\theta \\ y = r\sin\theta \end{cases}$ 



- (2) 直角坐標 (x, y) 化成極坐標  $(r, \theta)$  :  $\begin{cases} r = \sqrt{x^2 + y^2} \\ \cos \theta = \frac{x}{r} \\ \sin \theta = \frac{y}{r} \end{cases}$
- NOTE 一般坐標轉換在解題時,仍以圖解較為方便,例:



④ 直 
$$(-2, -2\sqrt{3})$$
 ⇒  $x = -2$   $y = -2\sqrt{3}$   $y = -2\sqrt{3}$ 

#### 難易度 🎳 🖫

#### 02 老師講解

### 直角坐標與成極坐標的轉換





- (1) 將直角坐標 $(-1,\sqrt{3})$ 轉換為極坐標。
- (2)將極坐標(4,315°)轉換為直角坐標。
- (1) 將直角坐標 $(2,-2\sqrt{3})$ 轉換為極坐標。
- (2)將極坐標(2,135°)轉換為直角坐標。

## **愛 重點** 複數的極式

1. **複數的標準式和極式:**複數 z=a+bi ( $a \cdot b$  為實數)稱為標準式。可在直角坐標平面上找到相對應點 (a,b),而同一位置直角坐標 (a,b)亦可用極坐標  $(r,\theta)$ 表示。所以複數亦有另一表示法  $z=r(\cos\theta+i\sin\theta)$ ,其中  $r=\sqrt{a^2+b^2}$ ,  $\cos\theta=\frac{a}{r}$  、  $\sin\theta=\frac{b}{r}$  ,此即為複數的極式表示法記為:

 $z = r(\cos\theta + i\sin\theta)$  ,  $r = |z| = \sqrt{a^2 + b^2}$  稱為向徑 ,  $\theta$  為輻角 (當  $0 \le \theta < 2\pi$  時 ,  $\theta$  稱為主輻角 ,以 Arg(z) 表示 )。

NOTE

標準式:  $z = a + bi \longleftrightarrow$  **直角坐**標 (a,b)

1

極式:  $z = r(\cos\theta + i\sin\theta) \longleftrightarrow$  極坐標  $(r,\theta)$ 

2. 非極式轉化為極式:

 $(1) \sin \theta + i \cos \theta = \cos(90^{\circ} - \theta) + i \sin(90^{\circ} - \theta)$  ( ) ( ) ( ) ( )

 $(2)\cos\theta - i\sin\theta = \cos(-\theta) + i\sin(-\theta)$ (負角)

 $(3) - \cos\theta + i\sin\theta = \cos(180^{\circ} - \theta) + i\sin(180^{\circ} - \theta)$  (補角)

 $|(4) - \cos \theta - i \sin \theta = \cos(180^\circ + \theta) + i \sin(180^\circ + \theta)$ (對角)

### 難易度 🎳 👸

#### 老師講解

### 求主輻角



試求下列複數之主輻角:

- (1)  $z = 2\sqrt{3} 2i$
- (2)  $z_2 = \cos 20^{\circ} i \sin 20^{\circ}$
- (3)  $z = \sin 73^{\circ} + i \cos 253^{\circ}$

試求下列複數之主輻角:

- (1)  $z = -1 + \sqrt{3}i$
- (2)  $z = \sin 42^{\circ} + i \cos 42^{\circ}$
- $(3) z = -\cos 50^{\circ} i\sin 50^{\circ} \circ$



### 自我挑戰



1. 
$$z_1 = \frac{(3-2i)^6(-1+i)^8}{(12+5i)^2(-\sqrt{3}-i)^3}$$
,  $\exists |z_1| =$ \_\_\_\_\_\_\_

2. 試轉化下列極坐標及直角坐標:

$$(1) (4,330^{\circ}) = \underline{\qquad} (2) (-3,-3) = \underline{\qquad}$$

$$(2)(-3,-3) =$$

3. 試求下列各複數的主輻角:

$$(1) z = \cos 15^{\circ} - i \sin 15^{\circ} , \theta = \underline{\qquad}$$

(2) 
$$z = \sin 40^\circ + i \cos 40^\circ$$
,  $\theta =$ \_\_\_\_\_

(3) 
$$z = -\cos 70^{\circ} - i\sin 70^{\circ}$$
,  $\theta =$ 

## 8-4

## 極式的應用





### 重點

### 極式的乘除及其應用

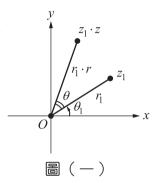
1. 極式的乘除運算:

 $z_1 = r_1(\cos\theta_1 + i\sin\theta_1)$  ,  $z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$  , [1] :

- (1)  $z_1 \times z_2 = r_1 \times r_2 [\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)]$  °
- (2)  $\frac{z_1}{z_2} = \frac{r_1}{r_2} [\cos(\theta_1 \theta_2) + i\sin(\theta_1 \theta_2)] \quad (z_2 \neq 0)$
- **NOTE** 由(1)可得 $z_1^n = r_1^n(\cos n\theta_1 + i\sin n\theta_1)$
- 2. 複數的幾何意義(旋轉):

設 $z = r(\cos\theta + i\sin\theta)$ ,  $z_1 = r_1(\cos\theta_1 + i\sin\theta_1)$ ,

則  $z_1 \times z = r_1 \times r[\cos(\theta_1 + \theta) + i\sin(\theta_1 + \theta)]$ ,即  $z_1$  乘 z 之後向徑變成 r 倍,輻角增加  $\theta$ 。可視為由  $z_1$  之終邊旋轉  $\theta$  角,且長度變成 r 倍。(如圖(一))



### 3. 極式乘除運算的應用(電機電子群選讀):

(1)基本電學中為了與電流 I 做區別,將虛數單位  $\sqrt{-1}$  以 j 表示,而極式  $r(\cos\theta+i\sin\theta)$  在基本電學中也簡化以  $r\angle\theta$  表示。以下舉例數學與基本電學表示法做對照。

|      | 數學                                                                                                      | 基本電學                                                                                                                         |
|------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| 複數坐標 | $z = 1 + i \Longrightarrow (1,1)$                                                                       | $\overline{A} = 1 + j$                                                                                                       |
| 極坐標  | $z = \sqrt{2}(\cos 45^\circ + i \sin 45^\circ) \Rightarrow (\sqrt{2}, 45^\circ)$                        | $\overline{A} = \sqrt{2} \angle 45^{\circ}$                                                                                  |
| 極式相乘 | $z_1 \times z_2 = r_1 \times r_2 [\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2)]$              | $\overline{A} \times \overline{B} = A \angle \theta_1 \times B \angle \theta_2$ $= A \times B \angle (\theta_1 + \theta_2)$  |
| 極式相除 | $\frac{z_1}{z_2} = \frac{r_1}{r_2} \left[\cos(\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2)\right]$ | $\frac{\overline{A}}{\overline{B}} = \frac{A \angle \theta_1}{B \angle \theta_2} = \frac{A}{B} \angle (\theta_1 - \theta_2)$ |

- (2) 正弦波交流電:基本電學中正弦的交流電有二種表示法
  - ①正弦式:  $V(t) = V_m \sin(\omega t + \theta i) = V \times \sqrt{2} \sin(\omega t + \theta i)$

其中 $V_m$ 為峰值,V表示有效值 $V_{rms}$ 。

- ②相量式: $\overline{V} = V \angle \theta_i$ 。
- NOTE 將正弦式轉化為相量式可利用極式乘除性質方便運算。

### 難易度 🎳 🐃

### 01 老師講解

### 極式的乘除





試將 
$$\frac{4(\cos 53^{\circ} + i \sin 53^{\circ}) \times 3(\sin 14^{\circ} + i \cos 14^{\circ})}{6(\cos 261^{\circ} - i \sin 261^{\circ})}$$
 化

為標準式。

試將 
$$\frac{(\cos 10^\circ + i \sin 10^\circ) \times (\sin 70^\circ + i \cos 70^\circ)}{\cos 30^\circ - i \sin 30^\circ}$$
 化為標準式。

### 難易度 🎳 👸

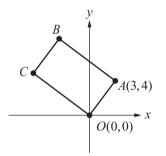
### 02 老師講解

### 極式的應用

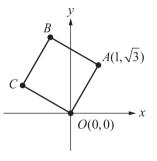
學生演練



如圖,矩形 OABC中, O(0,0)、 A(3,4),且  $\overline{OA}:\overline{OC}=1:2$ ,試求 B、 C坐標。



如圖,正方形 OABC中,O(0,0)、  $A(1,\sqrt{3})$ , 試求 B、 C坐標。



#### 難易度 🦥 🖫

### 03 老師講解

### 極式的應用





已知
$$\left|\frac{z-1}{z}\right| = \sqrt{2}$$
,Arg $\left(\frac{z-1}{z}\right) = 45^{\circ}$ ,若

$$z = a + bi$$
 ( $a \cdot b$  均為實數),試求 $a \cdot b$ 。

已知
$$\left|\frac{z}{z+1}\right| = 2$$
,Arg $\left(\frac{z}{z+1}\right) = 90^{\circ}$ ,若

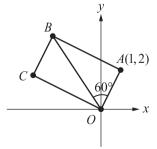
z = a + bi ( $a \cdot b$  均為實數),試求 $a \cdot b$ 。



### 自我挑戰



- 1. 將  $\frac{3\sqrt{3}[\cos(-21^\circ)+i\sin(-21^\circ)]\times\sqrt{2}(\cos 222^\circ+i\sin 222^\circ)}{\sqrt{3}(\cos 66^\circ+i\sin 66^\circ)}$  化簡為複數的標準式\_\_\_\_\_\_。
- 2. 如右圖,已知 O 為原點, A(1,2),  $\angle AOB = 60^{\circ}$  ,  $\overline{OB} = 2\overline{OA}$  , 且 OABC 為四邊形,則 B 點坐標為 \_\_\_\_\_ 。



- 3.  $|z| |z-1| = 2 , |Arg(\frac{z-1}{z})| = \frac{5\pi}{3} , |I| |z| = \underline{\qquad}$
- 4.  $x = \sqrt{2}(\cos 45^\circ + i \sin 45^\circ)$   $y = 2(\cos 30^\circ + i \sin 30^\circ)$   $z = 4(\cos 60^\circ + i \sin 60^\circ)$  ,  $\frac{x^4 y^5}{z^2} = \underline{\qquad}$



### 歷屆試題

) 1. 若 $\theta$ 為一標準位置角, $i=\sqrt{-1}$ 。已知  $\cos\theta-\frac{\sqrt{3}}{2}i$  與 $\frac{-1}{2}+(\sin\theta)i$  為共軛複數,則  $\sin 2\theta = ?$ 

(A)  $\frac{\sqrt{3}}{2}$  (B)  $\frac{-\sqrt{3}}{2}$  (C)  $\frac{\sqrt{3}}{4}$  (D)  $\frac{-\sqrt{3}}{4}$ 

【113(C),答對率 39%】

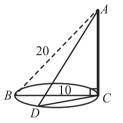
) 2. 已知  $x = \sqrt{2}(\cos{\frac{\pi}{4}} + i\sin{\frac{\pi}{4}})$   $y = 2(\cos{\frac{\pi}{6}} + i\sin{\frac{\pi}{6}})$   $z = 2(\cos{\frac{\pi}{3}} + i\sin{\frac{\pi}{3}})$  , 其中 ( 

(A)  $2^2 \left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$  (B)  $2\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$ 

(C)  $2^2 \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}\right)$  (D)  $2 \left(\cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6}\right)$  °

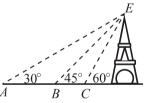
【112(C), 答對率 34%】

) 3. 有一露營活動,大家想要在地面上立一垂直桿子,並以繩索固 ( 定,如圖所示,其中 $\overline{AC}$ 為垂直於地面的桿子、 $\overline{AD}$ 為繩索。已 知  $B \cdot C$  兩點相距 10 公尺,而 D 點是位於以  $\overline{BC}$  為直徑的圓上, 且  $\angle BCD = 30^{\circ}$ 。若從桿頂 A 到 B 點的距離為 20 公尺,則  $\overline{AD} = ?$   $B \in \mathbb{R}$ (A) $14\sqrt{2}$  公尺 (B) $8\sqrt{6}$  公尺 (C) $5\sqrt{15}$  公尺 (D) $11\sqrt{3}$  公尺。



【112(C),答對率 41%】

( ) 4. 某人由A處測量高塔塔頂E的仰角為 $30^{\circ}$ ,朝高塔方向前推a公尺至B處時測量塔頂E的仰角為 $45^{\circ}$ ,繼續朝高塔方向前推 b公尺至C處時測量塔頂E的仰角為 $60^{\circ}$ ,如圖所示,則 $\frac{a}{b}$ =?  $\frac{\cancel{30^{\circ}} \cancel{45^{\circ}}\cancel{60^{\circ}}}{\cancel{4}}$ 



(A)  $\sqrt{3}$  (B)  $\frac{2\sqrt{3}}{2}$  (C)  $\frac{\sqrt{3}}{2}$  (D)  $\frac{\sqrt{3}}{6}$   $\circ$ 

【111(C),答對率 33%】

- ) 5.  $0 < \theta < \frac{\pi}{2}$ ,且  $\sin \theta = \frac{3}{5}$ 。若  $\sin 4\theta = a$ ,則下列何者正確? ( (A)  $0 < a < \frac{1}{4}$  (B)  $\frac{1}{4} < a < \frac{1}{2}$  (C)  $\frac{1}{2} < a < \frac{3}{4}$  (D)  $\frac{3}{4} < a < 1$  (I 110(B),答對率 30%]
- ) 6. 孫悟空師徒四人取經途中經過一廣闊平原,看到前方有一尊高大佛像,其頂部 ( 仰角為37°,四人往佛像前行31公尺後,佛像頂部仰角變為53°。求佛像高度 約為多少公尺?

(A) 57 (B) 53 (C) 37 (D) 31 °

【110(B), 答對率 31%】

- 7.  $\sin 10^{\circ} \cos 10^{\circ} \cos 50^{\circ} \sin 25^{\circ} \cos 25^{\circ} \cos 20^{\circ} = ?$ (
  - $(A)\frac{1}{2}$   $(B)\frac{1}{4}$   $(C)-\frac{1}{4}$   $(D)-\frac{1}{2}$

【110(C), 答對率 38%】

( ) 8.  $\triangle ABC$ 中,a、b、c分別為 $\angle A$ 、 $\angle B$ 、 $\angle C$ 之對邊長。若ab:bc:ca=3:4:6,則  $\sin A$ :  $\sin B$ :  $\sin C=?$ 

(A)4:3:2 (B)4:2:3 (C)2:3:4 (D)3:2:4。 【110(C),答對率 37%】

( ) 9. 若  $\sin 2\theta = \frac{1}{2}$ ,則  $(\sin \theta + \cos \theta)^2 = ?$ 

(A)  $\frac{1}{4}$  (B)  $\frac{3}{4}$  (C) 1 (D)  $\frac{3}{2}$  °

【109(B),答對率 40%】

( ) 10. 某甲沿著馬路向正前方一棟大樓直線前進,抬頭看大樓頂端的仰角為30度,走了100公尺後,第二次抬頭看大樓頂端,此時的仰角為45度,則第二次抬頭看大樓時距離大樓還有多遠?

(A)  $25(\sqrt{3}-1)$  (B)  $50(\sqrt{3}+1)$  (C)  $100(\sqrt{3}-1)$  (D)  $100(\sqrt{3}+1)$   $\circ$ 

【109(B),答對率 35%】

( ) 11. 若  $\sin 80^{\circ} = a$  ,  $\cos 59^{\circ} = b$  ,則  $\cos 21^{\circ} =$  ?

(A)  $a\sqrt{1-b^2} + b\sqrt{1-a^2}$  (B)  $a\sqrt{1-b^2} - b\sqrt{1-a^2}$ 

(C)  $ab - \sqrt{1-a^2} \sqrt{1-b^2}$  (D)  $ab + \sqrt{1-a^2} \sqrt{1-b^2}$  。 【109(C),答對率 35%】

( ) 12. 設  $(\sqrt{3}+i)z = -2\sqrt{3}+2i$  , 其中  $i = \sqrt{-1}$  , 則 z 之主輻角為何?

(A) $\frac{\pi}{3}$  (B) $\frac{2\pi}{3}$  (C) $\frac{5\pi}{6}$  (D) $\frac{7\pi}{6}$  °

【109(C),答對率 42%】

- ( ) 13. 在  $\triangle ABC$  中,若  $\frac{\cos B + i \sin B}{(\cos A + i \sin A)(\cos C + i \sin C)}$  為實數其中  $i = \sqrt{-1}$  ,則  $\triangle ABC$  必為何種三角形?
  - (A) 等腰三角形 (B) 銳角三角形 (C) 直角三角形 (D) 鈍角三角形。

【108(C), 答對率 37%】

( ) 14. 一輛遙控小車在平坦無坡度的操場行駛,正前方遠處有一座直立水塔,測得塔 頂的仰角 30°。若小車往水塔方向移動 10 公尺後,測得塔頂的仰角 45°,則水 塔的高度為多少公尺?

(A)  $5\sqrt{3}$  (B)  $5(\sqrt{2}+1)$  (C)  $4(\sqrt{2}+\sqrt{3})$  (D)  $5(\sqrt{3}+1)$  。 【107(B),答對率 44%】

( ) 15. 若  $\tan 19^\circ = a$  ,則  $\sin 2018^\circ = ?$ 

(A)  $-\frac{2}{1+a^2}$  (B)  $-\frac{2a}{1+a^2}$  (C)  $\frac{a}{1+a^2}$  (D)  $\frac{1}{\sqrt{1+a^2}}$  ° 【107(C),答對率 44%】

( ) 16. 設  $f(x) = 4\sin x + \cos(2x) + 7$ 的最小值為m,最大值為M,則m + M = ?

(A)-7 (B)1 (C)12 (D)21 °

【107(C), 答對率 44%】

( ) 17. 已知  $\sin\theta + \sqrt{3}\cos\theta = a \cdot \sin(\theta + b)$  , a > 0 ,  $0 \le b \le 2\pi$  ,則下列何者正確?

(A) a = 4,  $b = \frac{\pi}{6}$  (B) a = 2,  $b = \frac{\pi}{3}$  (C) a = 2,  $b = \frac{4\pi}{3}$  (D) a = 4,  $b = \frac{\pi}{3}$ 

【106(B), 答對率 36%】